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Quantization of the electromagnetic field

Quantize the classical equations with spatiotemporal description.
The free electromagnetic field
Classically: Maxwell’s equations with solution

B = ∇× A, E = −∂A
∂t
, ∇ · A = 0

A(r, t) =

∫
d3k√
2ω(k)

2∑

s=1

εs

[
a+
s (k)eiω(k)t−ik·r + as(k)e−iω(k)t+ik·r

]

ω(k) = |k|, ε1 · ε2 = 0, εs · k =0

Quantization

a+
s (k) and as(k) → operators

with commutation relations
[
as(k), a+

s′ (k
′)
]

= δss′δ
3(k − k′)
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Basic remarks on spatiotemporal dependence

Classically
Maxwell’s equations (and boundary conditions) govern

Quantum
Classical behaviour is inherited to correlations. Modal and material
dispersion effects can be present in fibres and hollow waveguides.

Strategy
Analyze the simple classical ED first and apply the results to QED.
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Losses for a single mode fibre

From Karlsson & Kristensson (1996-2011)
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Dispersion

Dispersion shift
The diameter of the fibre is chosen to cancel the dispersion D at
the design wavelength λ0

D(λ0) = Dm(λ0) + Dw (λ0) = 0

There is a remaining dispersion after the dispersion shift.

Dm (< 0) material dispersion
Dw (> 0) waveguide dispersion

D =
dτg
dλ

dispersion parameter

τg =
dkz

dω
inverted group velocity

kz axial wave number
λ wavelength in vacuum

D(λ)

λ
0 λ
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State of the art for fibres

Current bit rates for fibres

10 Gbit/s per channel in commercial systems

40 Gbit/s with wavelength dispersion multiplexing

1 Tbit/s in laboratories

From Karlsson & Kristensson (1996-2011)
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TE/TM theory

The electromagnetic field is derived from two scalar potentials Hz

and Ez :
H = H(Ez ,Hz), E = E(Ez ,Hz )

TE waves Ez = 0 and ϕTE = Hz as potential

TM waves Hz = 0 and ϕTM = Ez as potential

The TM and TE waves do not couple for a hollow waveguide with
perfectly conducting walls.
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The TM solution

Ez(x , y , z , t) =
∞∑

n=1

vn(x , y)ϕn(z , t).

ϕn(z , t) is a solution to the Klein-Gordon equation

(
∂2

∂t2
− ∂2

∂z2
+ m2

n)ϕn(z , t) = 0.

The complete set vn of basis functions is a solution to

(
∂2

∂x2
+

∂2

∂y2
+ m2

n)vn(x , y) = 0, (x , y) ∈ Ω, vn|∂Ω = 0

ϕn(z , t) =

∫
dk

2
√

2πωn(k)

[
a+
n (k)e iωn(k)t−ikz + an(k)e−iωn(k)t+ikz

]

ωn(k) =
√

k2 + m2
n.

Quantize by taking an(k) and a+
n (k) as the annihilation and

creation operators.
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Dispersive behaviour of a pulse

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t/t
0

E
(z

,z
/c

+
t)

 

 
0
0.04
0.2
1
5
25

The propagation of a double exponential pulse with m̄ = mt0 = 2
and z̄ = z/t0 as a parameter. The time t is taken after the arrival
of the pulse. t0 is the time at the maximum of the initial pulse.

Wave guide dispersion

widens the pulse reducing the bit rate due to mixing of pulses.

attenuates the peak level of the pulse obstructing observations
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Dispersion for large distances

Ê (z , s) =

∫ ∞

0
E (z , t) e−stdt.

The stationary phase method provides

E (z , z + t) ∼z→∞

√
mn

πz

[ t

z
(2 +

t

z
)
]−3/4

×

Re

{
Ê (0,−iωs)e

−imn[ t
z
(2+ t

z
)]

1/2
z−iπ/4

}
u(t)

, (1)

where ωs = mn(1 + t/z)/
√

t/z(2 + t/z).

A rigorous method with error bounds, Olver (1974).

A valuable analytical tool for analyzing correlations at large
distances.
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High accuracy of asymptotic formulae

Comparison between asymptotic formulae (long) and an
independent numerical method (short)

0 0.2 0.4 0.6 0.8 1
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

t/t
0

E
(z

,z
/c

+
t)

 

 

short 
long 

Figure:
z̄ = z/t0 = 100, m̄ = mt0 = 2
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Figure:
z̄ = z/t0 = 10, m̄ = mt0 = 20

A high accuracy is demonstrated for the asymptotic formula
at large distances. The accuracy is even better for larger times.
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Problem formulation

Determine the spatiotemporal dependence of correlation
functions for entangled photons in waveguides

Only waveguide dispersion.

The hollow waveguide model with frequency independent
mass is used.

This will demonstrate the effect of dispersion but it is
exaggerated.
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Probability density

We consider only the z−component of the TM-field that solves the
Klein-Gordon equation. We define a one particle state

|ψ1〉 =

∫
g(k)a†

k
|0〉,

where |0〉 is the Fock vacuum. The probability density to detect
the photon at the point z along the waveguide at time t is
proportional to

P(z , t) = 〈ψ1|ϕ(−)(z , t)ϕ(+)(z , t)|ψ1〉,

where

ϕ(+)(z , t) =
1

(2π)1/2

∫

R

dk√
2ωk

ake
−iωk t+ikz , ϕ(−)(z , t) = h.c .,

and ωk =
√

k2 + m2,m > 0.
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Probability density II

The probability can be written as

P(z , t) = |A(z , t)|2.
Like the classical case, A(z , t) is a solution to the Klein-Gordon
equation and

A(z , t) = 〈0|ϕ(+)(z , t)|ψ1〉 =

∫
dkg(k)

e−iωk t+ikz

2
√

2πωk

.

For sufficiently smooth function g(k) one can use the stationary
phase method to get for the probability

P(z , t) ∼z→∞
1

4t

∣∣∣∣∣g

(

m
z

t

/√
1 − z2

t2

)∣∣∣∣∣

2

1 − z2

t2
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Correlation function for the biphoton

Now we define a two particle entangled state (biphoton)

|ψ〉 =

∫
f (k1, k2)a

†
k1

a
†
k2
|0〉,

where |0〉 is the Fock vacuum and f (k1, k2) = f (k2, k1) (bosons).
The probability to detect one particle at the point z1 along the
waveguide at time t1 and another particle at the space point z2 at
time t2 is proportional to

P(z1, t1, z2, t2) = 〈ψ|ϕ(−)(z1, t1)ϕ
(−)(z2, t2)ϕ

(+)(z2, t2)ϕ
(+)(z1, t1)|ψ〉.
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Correlation function for the biphoton II

The probability for finding two photons is proportional to

P(z1, t1, z2, t2) = |A(z1, t1, z2, t2)|2,

where

A(z1, t1, z2, t2) = 〈0|ϕ(+)(z1, t1)ϕ
(+)(z2, t2)|ψ〉 =

∫
dk1dk2

{
e−iωk2

t2+ik2z2

2
√

2πωk2

e−iωk1
t1+ik1z1

2
√

2πωk1

f (k1, k2) + (k1 ↔ k2)

}
.
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Correlation function for the biphoton III

We get for the probability of finding two photons:

P(z1, t1, z2, t2) ∼z1,z2→∞
1

16t1t2

|f (k10, k20)|2(
1 − z2

1

t2
1

)(
1 − z2

2

t2
2

)

∣∣∣e−it1(ωk10
−ik10z1)/t1e−it2(ωk02

−ik20z2/t2) + (k1 ↔ k2)
∣∣∣
2

where

ki0 = m
zi

ti

/√

1 − z2
i

t2
i

ωki0
= m

/√

1 − z2
i

t2
i

Dispersion is causing spreading as well as attenuation of the
maximum amplitude.
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Correlation function for the biphoton IV

Without using asymptotic methods it can be shown that there
exists a constant C such that

P(z1, t1, z2, t2) ≤
C

|t1||t2|
,

for all z1, t1, z2, t2 (attenuation of the maximum amplitude).
An explicit expression in a special case is given by Yang et al
(2008):

f (k1, k2) =
i

k2
0

fP(k1 + k2)
√

6k1k2(k1 + k2),

fP(k1 + k2) is a Gaussian function describing the pumping photons.
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Entanglement over long distances but dispersion is a big

problem

Our predictions on dispersion for the hollow waveguide are seen in
the optic fibre:

100-km entanglement distribution, Chang et al 2008

Means to reduce unwanted effects from dispersion

Dispersion shift

A very narrow band pass filter in the fibre: 0.8 nm (the
wavelength for the pumping laser is 15559 nm)

Still the time duration of the photon pair increased from 4 ps
to 25 ps by the 100 km fibre

Super conducting detectors are required for observing the
photons.
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Theory for photon correlations in an optic fibre

Classical hollow waveguide with material dispersion and
dispersion shift
The analysis is formally the same as above but larger distances are
required until algebraic decay is prominent.

Classical fibre
More complicated. Non-discrete modes appear but decay more
quickly than the lowest discrete mode. One discrete mode with a
band limit source is a good model.

Quantum fibre
One discrete mode with a band limit source should be a good
model. The quantization problem for a mode with complex valued
and frequency dependent mass remains.
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Summary

The spatiotemporal dependence of correlation functions for
entangled photons in waveguides

Accurate asymptotic expressions for photon correlation
functions in hollow waveguides

Photon correlations spread in space and time due to dispersion

Qualitative agreement with experiments on 100-km fibres

Discussion of theory for optic fibres
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