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The family of averaging dynamical maps

The sequence of strongly continuous semigroups in Banach space
X :

Tn(t), t > 0, n ∈ N

Let µ is nonnegative normalized finite additive measure on the
measurable space (N, 2N). We study the properties of the
1-parametric family of maps

Tµ(t) =

∫

N

Tn(t)dµ(n), t > 0,

where integration is defined in Pettis since.
The description of the set of limit points of the sequence of
reqularizing semigroups.
The semigroup property and irreversibility property of the family of
averaging dynamical maps Tµ(t), t > 0.



The Cauchy problem for degenerated Schrodinger equation

The Cauchy problem for Schrodinger equation

i
d

dt
u(t) = Lu(t), t > 0, (1)

u(+0) = u0, u0 ∈ H, (2)

L is symmetric operator in the Hilbert space H = L2(R), and 2-nd
order linear differential operator with nonnegative characteristic
form.



The model problem (1), (2)

Lu(x) =
∂

∂x
(g(x)

∂

∂x
u +

i

2
a(x)u) +

i

2
a(x)

∂

∂x
u (3)

D(L) = {u ∈ W 1
2 : u|R− ∈ W 2

2 (R−)

(g(x)
∂u

∂x
+

i

2
a(x)u) ∈ W 1

2 (R)} (4).

Here g(x) = θ(−x), a(x) = αθ(x), where α ∈ R and θ(x) is
Heviside function.
L is densely defined closed symmetric operator with deficience
indexes (n−, n+)

(1,0) if α < 0; (0,0) if α = 0; (0,1) if α > 0.



The correctness of Cauchy problem

Theorem 1.
Let L is operator above. Then
1. α 6 0 (then n+ = 0) ⇒ e−itL is isometric semigroup. The
problem (1), (2) ∃ ! solution u(t) = e−itLu0.
2. α > 0 (then n− = 0) ⇒ e itL is isometric semigroup, e−itL∗ is
contractive semigroup, and

H = H0 ⊕ H1,

where H0 =
⋂
t>0

(e itLH), H1 =
⋃
t>0

Ker(e−itL∗).

The solution of (1), (2) exists ⇔ u0 ∈ H0 ⇒ unique.



Regularization (simple)

i
d

dt
u(t) = Lεu(t), t > 0, ε ∈ (0, 1). (5)

Lε = L + ε∆ : gε(x) = g(x) + ε.

Lε = L∗ε ∀ ε ∈ (0, 1). {uε(t)} = {e−iLεtu0}.
Theorem 2.
1. α 6 0 ⇒ ∀ T > 0, u0 ∈ H lim

ε→0
sup

t∈[0,T ]
‖uε(t)− u(t)‖H = 0.

2. α > 0 ⇒ ∀ T > 0, u0, v ∈ H
lim
ε→0

sup
t∈[0,T ]

|(v , uε(t)− u∗(t))| = 0, where u∗(t) = e−iL∗tu0.

{uε} converges strongly ⇔ u0 ∈ H0.
If u0 ∈ H1 then lim

t→+∞ ‖u
∗(t)‖H = 0.



The set of quantum states

H is separable Hilbert space (L2(R)).
B(H) is Banach space of bounded linear operators in H.
B∗(H) is Banach space conjugate to B(H).

Σ(H) = S1(B
∗(H))

⋂
B∗+(H) is the SET of quantum states.

Σp(H) = {ρu ∈ Σ(H), u ∈ S1(H) : ρ(A) = (u,Au)H ∀ A ∈ B(H)}
is the set of pure states.

Σn(H) = {ρ =
∞∑

k=1
pkPek

, {ek} is ONS} is the set of normal states.

The non-normal states: KMS-states; Dixmer trace; The states after
the measurement of observable with continuous spectrum.
Theorem S. ρ ∈ Σ(H) ⇒
⇒ ∃µ ∈ S1(l

∗∞)
⋂

(l∗∞)+; ∃ the sequence {ek} of uniq vectors :

ρ =

∫

N

ρek
dµ.



The weak* convergence of regularizing density operators

uε(t, u0) = e−iLεtu0 – the sequence of solutions of regularizing
problems (2), (5).

ρε(t, u0) = ρuε(t,u0) ∈ Σp(H) – the sequence of regularizing density
operators: 〈ρε(t, u0),A〉 = (uε(t, u0),Auε(t, u0))}.
Weak* convergence: ρε ↪→∗ ρ ⇔ 〈ρε,A〉 → 〈ρ,A〉 ∀ A ∈ B(H).

Theorem 3.
Let α > 0. Then ∀t > 0, ∀{εn} → 0 ∃ u0 ∈ S1(H):
{ρεn(t, ρu0)} diverges in weak* topology.

∀t > 0, ∀{εn} → 0 ∃ u0 ∈ S1(H) : ∃A ∈ S1(B(H)) :

the sequence {〈ρεn(t, ρu0),A〉} diverges.



The sequence of regularizing quantum states as the random
process

E = (0, 1); (E , 2E ) is measurable space.
Let ba(E , 2E ) be Banach space of finite additive measures on the
measurable space (E , 2E ).

W (N) = (S1(l
∗
∞/l1))+.

W (E ) = {µ ∈ S1(ba(E , 2E ))
⋂

ba+(E , 2E ) :

µ(K ) = 0 ∀K ⊂ E , 0 /∈ K̄}.
We study the random process

ρε(t, ρu0) : (E , 2E , µ) → (B∗(H), CylB(H)(B
∗(H))), t > 0, (6)

where u0 ∈ S1(H).



The structure of the set of limit points and the mean values
of the process

The mean values of random process (6) is the Pettis integral

ρµ(t, ρu0) =

∫

E

ρε(t, ρu0)dµ(ε), t > 0, ρu0 ∈ Σp(H). (7)

i.e. ∀ A ∈ B(H) : 〈ρµ(t, ρu0),A〉 =
∫
E

〈ρε(t, ρu0),A〉dµ(ε).

We obtain the parametrization of the set of limit points by the
measures from the set W (E ).
Theorem 4. The state ρ is the limit point of the sequence
{ρε(t, ρu0), ε → 0} iff ρ is the mean value (7) of the process (6)
with some µ ∈ W (E ).



The family of mean dynamical maps
T µ(t), t > 0, µ ∈ W (E )

Let t > 0 and

Tε(t) : ρu0 → ρε(t, ρu0); Tµ(t) : ρu0 → ρµ(t, ρu0)

are the sequence of regularizing dynamical semigroups and the
family averaged dynamical maps of the space B∗(H).

Tµ(t) =

∫

E

Tε(t)dµ, t > 0; µ ∈ W (E )

For any µ ∈ W (E ) and t > 0 the map Tµ(t) is continuous linear
map of the space B∗(H) with invariant set Σ(H).

The mean trajectory of the averaged maps Tµ(t), t > 0, with the
initial point ρ0 ∈ Σ(H) is the curve in Banach space B∗(H):
γµ

ρ0 = {ρµ(t, ρ0) = Tµ(t)ρ0; t > 0}



The properties of the mean maps

Let t > 0, H0(t) = Im(e iLt), H1(t) = Ker(e−iL∗t).

Remark 5. Let the vector u0 ∈ S1(H) has the nontrivial projections
u0s on the subspaces Hs(t), s = 0, 1. Then for any measure
µ ∈ W (E ) the image of the circle

Cu0 ≡ {ρ0α = ρu00+e iαu01
, α ∈ [0, 2π)}

by the map Tµ(τ) is one-point set as τ = t and is the circle for
some τ > t.

The maps Tµ(t), t > 0, don’t possess the semigroup property and
injectivity property.

The problem:
Can we obtain the trajectory ρµ(t, ρ0) of the averaged map by the
information about µ ∈ W (E ) and ρµ(t0, ρ0) for some t0 > 0?



Variational description of mean trajectories

Theorem 5. There is the class of measures M⊂ W (E ) such that
∀ µ ∈M the family of maps Tµ(t), t > 0, has the following
properties.
There is the functional Φ(t, ρ, r), (t, ρ, r) ∈ R × Σ(H)× Σp(H)
such that
1. For any ρ0 ∈ Σp(H) and any t > 0 the set of strong minimum
points of the functional Φ(t, Tµ(t)ρ0, ·) is the curve
C(t) = argmax(Φ(t,Tµ(t)ρ0, ·)) ∈ Σp(H) which is diffeomorphic
to the circle.
2. For any ρ0 ∈ Σp(H) and any t > 0 there is the number
t1 6= t, t1 > 0 such that ρ0 = C(t) ⋂ C(t1).
3. The map Tµ(t) is the isometric bijection of the set Σn(Hs(t))
onto the set Tµ(t)(Σn(Hs(t))) as s = 0, 1, moreover

Tµ(t)[Extr(Σn(Hs(t)))] = Extr(Tµ(t)Σn(Hs(t))).

Tµ(t)Σ(H0(t)) = Σ(H); Tµ(t)Σn(H1(t))
⋂

Σn(H) = ®.



The nonlocal variational problem

Theorem 6. If the measure µ satisfy the condition µ ∈ M then the
equality inf

t>0
sup

r∈Σp(H)
Φ(t,Tµ(t)ρ0, r) = 1 is necessary and sufficient

for inclusion ρ0 ∈ Σp(H).
If the condition ρ0 ∈ Σn(H) holds then there is the numbers
t1, t2 ∈ (0, +∞) such that the equalities

sup
r∈Σp(H)

Φ(ti , ρ
µ(ti , ρ0), r) = 1, i = 1, 2, is sufficient for the

inclusion ρ0 ∈ Σp(H) and following equality holds

ρ0 = argmax(Φ(t1, T
µ(t1)ρ0, ·))

⋂
argmax(Φ(t2, T

µ(t2)ρ0, ·)).



Variational description of mean trajectories with the initial
vector state in the subspace H0

Let t > 0, µ ∈ W (E ), u0 ∈ S1(H). Can we find ρu0 by the
information about the values

〈ρµ(t, ρu0),A〉, A ∈ B(H)? (I )

Let H0(t) = Im(e itL). If u0 ∈ H0(t) then we can find ρu0 by the
information about the values (I).
Let {ek} is some ONB in the separable Hilbert space H0(t). Then
we can find the ONS {fk} in the space H where fk = e−itL∗ek .
Since u(t, u0) = e−itL∗u0 is the solution of Cauchy problem (1), (2)
then ρµ(t, ρu0) = ρu(t,u0) for any µ ∈ W (E ). Therefore
〈ρµ(t, ρu0),Pfk 〉 = |(ek , u0)|2 and we can find the absolute values
of Fourier coefficients of the vector u0. Hence for any ε > 0 we can
find the vector v0ε such that ‖u0 − v0ε‖H < ε.



Variational description of mean trajectories with the initial
vector state in the subspace H1

Let H1(t) = (H0(t))
⊥ = Ker(e−itL∗). If u0 ∈ H1(t) then we can

find ρu0 by the information about the values (I).
Let {ek} is some ONB in the separable Hilbert space H1(t). Then
e−itLεek → θH ∀ k ∈ N.
Lemma 1. For any σ > 0 there is the subsequence {εk} such that

the system of unit vectors {f1k} is σ-ONS:
∞∑

k=1

‖fik − gk‖2 < σ2 for

some ONS {gk}. Here f1k = e−itLεk e1.
Lemma 2. For any σ > 0 and any m ∈ N there is the subsequence
{ε(m)

k } such that
1) the system of unit vectors {f (m)

jk } is 2−m-ONS, where

fjk = e
−itL

ε
(m)
k ej , j ∈ {1, ..,m}.

2) {ε(m+1)
k } is the subsequence of the sequence {ε(m)

k }.



Variational description of mean trajectories with the initial
vector state in the subspace H1

Lemma 3. There is the measure µ ∈ W (E ) such that
µ(

⋃
k∈N

ε
(m)
k ) = 1 for any m ∈ N.

Let M = {µ ∈ W (E ) : µ(
⋃

k∈N
ε
(m)
k ) = 1 for any m ∈ N.

Let j ∈ 1, n for some nßN and Qm(ej) =
∞∑

k=1
P

f
(m)
jk

for any m > n.

Then lim
m→∞〈ρ

µ(t, ρu0),Q
m(ej)〉 = |(ej , u0)|2 for any µ ∈M.

Therefore we can find the absolute values of Fourier coefficients of
the vector u0. Hence for any ε > 0 we can find the vector v0ε such
that ‖u0 − v0ε‖H < ε.



1. The influence of degeneration on the correctness of Cauchy
problem.

2. Regularization. The behavior of the sequences of regularizing
problem solutions and regularizing quantum states.

3. The limit points, set-valued maps and stochastic process.

4. The mean dynamical maps and the variational description of its
trajectories.
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The invariant means and finite additive measures

(N, 2N) is measurable space.
l∗∞ = ba(N, 2N) is the Banach space conjugated to l∞ (the space
of finite additive measures).
ca(N, 2N) = l1 ⊂ l∗∞ is the space of countable additive measures.
pba(N, 2N) = l∗∞\l1 = {µ ∈ ba(N, 2N) : µ(K ) = 0∀ bounded K}
is the space of purely finite additive measures.
V (N) = S1(l

∗∞)
⋂

(l∗∞)+ is the set of nonnegative normalized
measures.
W (N) = V (N)

⋂
pba(N), Vca(N) = V (N)

⋂
ca(N).

The set of extreme points (E. Hewitt, K. Iosida, 1952)
Extr(V (N)) = V0(N) –
Extr(W (N)) = W0(N) is two-values measures (filters);
Extr(Vca(N)) = V0,ca(N) is atomic measures.



The invariant means and finite additive measures

Radon integral for scalar functions:
a ∈ l∞, µ ∈ W (N), ⇒ 〈µ, a〉 =

∫
N

akdµ.

If the measure µ ∈ W (N) is invariant with respect to the group (of
a shifts) then this integral is Banach Limit.
Let X is Banach space, X∗ is it’s pre-conjugate.
{uk} is the sequence: N → X .
The Pettis integral:

y =

∫

N

ukdµ ⇔ 〈y , h〉 =

∫

N

〈uk , h〉dµ ∀ h ∈ X∗.



The subsets of a set Σ(H) and the commutatativity of a
states with an operator.

Σv (H) = {ρ ∈ Σ(H) : ∃ONS {ek}; ∃µ ∈ V (N) : ρ =

∫

N

ρek
dµ(k)}

Σn(H) = {ρ ∈ Σv (H) : µ ∈ Vca(N)}, −trace− class orerators inH;

Σpba(H) = {ρ ∈ Σv (H) : µ ∈ W (N)}−{is not operator fromB(H)}.

Definition 1. [ρ,A] = 0 ⇔ 〈ρ, [A, B]〉 = 0, ∀B ∈ B(H).

Σcom(H) = {ρ ∈ Σ(H) : ∃ {ek}−ONB : [ρ,P] = 0∀Pwith base{ek}}.



On the structure of quantum state set: it’s extreme points,
orthogonal and generalize decomposition of a state.

Theorem 1. Σv (H) = Σcom(H) = Σn(H)⊕ Σpba(H)

Theorem 2. (Extreme points of Σcom(H)).

ρµ,{ek} ∈ Extr(Σcom(H)) ⇔ µ ∈ Extr(V (N)) = V0(N).

Theorem 3.
ρ ∈ Σ(H) ⇒ ∃µ ∈ V (N) : ∃ the sequence {ek} such that

ρ =

∫

N

Pek
dµ.

ρ ∈ Extr(Σ(H)) ⇒ 1)µ ∈ V0(N); 2) ek ⇀ 0 by the filter Fµ.



The measurement of initial state by the observation of
mean trajectory.

1 H0) Let {ek} is ONB in the subspace H0(t), then
et,k = e−itL∗ek , k ∈ N, – ONB in H,
moreover, the equality |(u0, ek)|2 = 〈ρµ(t, ρu0),Pet,k

〉 holds.

2 H1(t)) Let f1 ∈ S1(H1(t)), then e−itLεf1 ⇀ θH as ε → 0.
⇒ ∀ σ > 0 ∃ {εk} : εk → 0; {f1(t, k) = e−itLεk f1, k ∈ N} – σ-
ON system.
Let {fj} is ONB in the subspace H1(t)

⇒ ∀ m ∈ N ∃ {εmk } : εmk → 0; {fj(t, k ,m) = e
−itLεm

k fj , k ∈
N, j ∈ {1, 2, ...,m}} – 2−m-ONS.

Qm(fj) =
∞∑

k=1
Pfj (t,k,m).

If the measure µ is concentrated on the set Em =
∞⋃

k=1

εmk ,

then |〈ρµ(t, ρu0),Qm(fj)〉 − |(u0, fj)|2| < 2−m+1.



The test operators and functionals.

The sets Em, m ∈ N is the base of the filter z
Let {fj} is ONB in the space H1(t) and measure µ is concentrated

on the set Em =
∞⋃

k=1
εmk ∀ m ∈ N.

⇒ ∃ {εk} : εk → 0; ∀ m ∈ N : {fj(t, k) = e−itLεk fj , k ∈ N, j ∈
{1, 2, ...,m}} – 2−m-ONS.

Qm(fj) =
∞∑

k=1
Pfj (t,k,m).

If the measure µ is concentrated on the filter z,
then |〈ρµ(t, ρu0),Qm(fj)〉 − |(u0, fj)|2| < 2−m+1 ∀ m ∈ N.


