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A new quantum dissipation model based on memory mechanism is suggested.
Dynamics of open and closed quantum systems with power-law memory is
considered. An example of quantum oscillator with linear friction and power-
law memory is considered.

The processes with power-law memory are described by using integration
and differentiation of non-integer orders, by methods of fractional calculus.
Fractional calculus is a theory of integrals and derivatives of any arbitrary
real (or complex) order. It has a long history from 30 September 1695, when
the derivatives of order α = 1/2 has been described by Leibniz in a letter to
L’Hospital The fractional differentiation and fractional integration go back to
many great mathematicians such as Leibniz, Liouville, Riemann, Abel, Riesz,
Weyl.

B. Ross, A brief history and exposition of the fundamental theory of fractional calculus,
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1 DERIVATIVES AND INTEGRALS OF NON-INTEGER ORDER

In general, many usual properties of the ordinary (first-order) derivative Dt

are not realized for fractional derivative operators Dα
t . For example, a product

rule, chain rule, semigroup property have strongly complicated analogs for the
operators Dα

t .
There are many different definitions of fractional integrals and derivatives

of non-integer orders.

A generalization of Cauchy’s differentiation formula

Let G be an open subset of the complex plane C, and f : G→ C is a holomorphic
function:

f (n)(x) =
n!

2πi

∮
L

f (z)

(z − x)n+1
dz. (1)

A generalization of (1) has been suggested by Sonin (1872) and Letnikov (1872)
in the form

Dα
xf (x) =

Γ(α + 1)

2πi

∮
L

f (z)

(z − x)α+1
dz, (2)

where α ∈ R and α 6= −1,−2,−3, ... See Theorem 22.1 in the book by Samko,
Kilbas, and Marichev. Expression (2) is also called Nishimoto derivative.
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A generalization of finite difference

The differentiation of integer order n can be defined by

Dn
xf (x) = lim

h→0

∆n
hf (x)

hn
, ∆n

hf (x) =

n∑
k=0

(−1)k
(
n

k

)
f (x− kh). (3)

The difference of a fractional order α > 0 is defined by the infinite series

∆α
hf (x) =

∞∑
k=0

(−1)k
(
α

k

)
f (x− kh),

(
α

β

)
=

Γ(α + 1)

Γ(β + 1)Γ(α− β + 1)
. (4)

The left- and right-sided Grünwald-Letnikov (1867,1868) derivatives of order
α > 0 are defined by

GLDα
x±f (x) = lim

h→0

∇α
∓hf (x)

hα
. (5)

If
|f (x)| < c(1 + |x|)−µ, µ > |α|.

then the series (4) can be used for α < 0 and Eq. (5) defines Grünwald-Letnikov
fractional integral. If f (x) ∈ Lp(R), where 1 < p < 1/α and 0 < α < 1, then (5)
can be represented by

GLDα
x±f (x) =

α

Γ(1− α)

∫ ∞
0

f (x)− f (x∓ z)

zα+1
dz.
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A generalization by Fourier transform

If we define the Fourier transform operator F by

(Ff )(ω) =
1

2π

∫ +∞

−∞
f (t)e−iωtdt, (6)

then the Fourier transform of derivative of integer order n is

(FDn
xf )(ω) = (iω)n(Ff )(ω).

Therefore
Dn
xf (x) = F−1{(iω)n(Ff )(ω)}.

For f (t) ∈ L1(R), the left- and right-sided Liouville fractional integrals and
derivatives can be defined by the relations

(Iα±f )(x) = F−1
( 1

(±iω)α
(Ff )(ω)

)
, (7)

(Dα
±f )(x) = F−1

(
(±iω)α(Ff )(ω)

)
, (8)

where 0 < α < 1 and

(±iω)α = |ω|α exp
(
±sgn(ω)

i α π

2

)
.
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The Liouville fractional integrals (7) can be represented by

(Iα±f )(x) =
1

Γ(α)

∫ ∞
0

zα−1f (x∓ z)dz. (9)

The Liouville fractional derivatives (8) are

(Dα
±f )(x) = Dn

x(In−α± f )(x).

Therefore
(Dα
±f )(x) =

1

Γ(n− α)

dn

dxn

∫ ∞
0

zn−α−1f (x∓ z)dz, (10)

where n = [α] + 1.
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Caputo derivative

We can define the derivative of fractional order α by

CDα
±f (t) = In−α± (Dn

t f )(t).

For x ∈ [a, b] the left-sided Caputo fractional derivative of order α > 0 is defined
by

C
aD

α
t f (t) = aI

n−α
t Dn

t f (t) =
1

Γ(n− α)

∫ t

a

dτ Dn
τ f (τ )

(t− τ )α−n+1
, (11)

where n − 1 < α < n, and aI
α
t is the left-sided Riemann-Liouville fractional

integral of order α > 0 that is defined by

aI
α
t f (t) =

1

Γ(α)

∫ t

a

f (τ )dτ

(t− τ )1−α
, (a < t).
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The Riemann-Liouville fractional derivative has some notable disadvantages
in applications such as nonzero of the fractional derivative of constants,

0D
α
t C =

t−α

Γ(1− α)
C,

which means that dissipation does not vanish for a system in equilibrium. The
Caputo fractional differentiation of a constant results in zero

C
0D

α
t C = 0.

The desire to use the usual initial value problems

f (t0) = C0, (D1
t f )(t0) = C1, (D2

t f )(t0) = C2, ...

lead to the application Caputo fractional derivatives instead of the Riemann-
Liouville derivative.
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2 POWER-LAW MEMORY AND FRACTIONAL DERIVATIVES

A physical interpretation of equations with derivatives and integrals of non-
integer order with respect to time is connected with the memory effects.
Let us consider the evolution of a dynamical system in which some quantity

A(t) is related to another quantity B(t) through a memory function M(t) by

A(t) =

∫ t

0

M(t− τ )B(τ )dτ. (12)

This operation is a particular case of composition products suggested by Vito
Volterra. In mathematics, equation (12) means that the value A(t) is related
with B(t) by the convolution operation

A(t) = M(t) ∗B(t).

Equation (12) is a typical equation obtained for the systems coupled to an
environment, where environmental degrees of freedom being averaged.
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Let us consider the limiting cases widely used in physics.

(1) The absence of the memory: For a system without memory, the time
dependence of the memory function is

M(t− τ ) = M(t) δ(t− τ ), (13)

where δ(t − τ ) is the Dirac delta-function. The absence of the memory means
that the function A(t) is defined by B(t) at the only instant t. In this case, the
system loses all its values of quantity except for one. Using (12) and (13), we
have

A(t) =

∫ t

0

M(t)δ(t− τ )B(τ )dτ = M(t)B(t). (14)

Expression (14) corresponds to the well-known physical process with complete
absence of memory. This process relates all subsequent values to previous
values through the single current value at each time t.
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(2) Complete memory: If memory effects are introduced into the system,
then the delta-function turns into some function with the time interval during
which B(t) affects on the function A(t). Let M(t) be the step function

M(t− τ ) = t−1[θ(τ )− θ(t− τ )], (15)

where θ(t) is the Heaviside function, also called the unit step function. The
Heaviside function θ(t) is a discontinuous function whose value is zero for
negative argument and one for positive argument. In equation (15), the factor
t−1 is chosen to get normalization of the memory function to unity:∫ t

0

M(τ )dτ = 1.

Then in the evolution process the system passes through all states continuously
without any loss. In this case,

A(t) =
1

t

∫ t

0

B(τ )dτ,

and this corresponds to a complete memory.
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(3) Power-law memory: The power-like memory function is defined by

M(t− τ ) = M0 (t− τ )ε−1, (16)

where M0 is a real parameter. Substitution of (16) into (12) gives the temporal
fractional integral of order ε:

A(t) = λIεtB(t) =
λ

Γ(ε)

∫ t

0

(t− τ )ε−1B(τ )dτ, 0 < ε < 1, (17)

where λ = Γ(ε)M0. The memory determines an interval [0, t] during which B(τ )

affects A(t).
Equation (17) is a special case of relation for A(t) and B(t), where A(t) is

directly proportional to M(t)∗B(t). In a more general case, the values A(t) and
B(t) can be related by the equation

f (A(t),M(t) ∗Dn
tB(t)) = 0, (18)

where f is a smooth function. In this case equation (18) gives the relation
f (A(t), C

0D
α
t B(t)) = 0 with Caputo fractional derivative.
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3 QUANTUM DYNAMICS WITH POWER-LAW MEMORY

Let us consider a generalization of Lindblad equation for quantum observables
in the form

C
0D

α
t At = −LVAt, (19)

where C
0D

α
t is the Caputo fractional derivative with respect to time t (dimensionless

variable), and

LVAt =
1

i~
[H,At]−

1

2~

∞∑
k=1

(
V ∗k [At, Vk] + [V ∗k , At]Vk

)
. (20)

For α = 1 we have the usual Lindblad equation. If α is non-integer, then
equation (19) defines the quantum processes with power-law memory.
If all operators Vk are equal to zero (Vk = 0), then we have a generalization

of the Heisenberg equation for Hamiltonian system with memory

C
0D

α
t At = − 1

i~
[H,At]. (21)

Note that the form of LV is not uniquely defined. The transformations

Vk → Vk + akI, H → H +
1

2i~

∞∑
k=1

(a∗kVk − akV ∗k ),

where ak are arbitrary complex numbers, preserve the form of equation (19).
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Cauchy-type problem

If we consider the Cauchy-type problem for equation (19) in which the initial
condition is given at the time t = 0 by A0, then its solution can be represented
in the form

At = Φt(α)A0, (t ≥ 0),

where
Φt(α) = Eα[−tαLV ]. (22)

Here Eα[L] is the Mittag-Leffler function with the superoperator argument

Eα[L] =

∞∑
k=0

1

Γ(αk + 1)
Lk.

Note that the relation

C
aD

α
t Eα[λ(t− a)α] = λEα[λ(t− a)α]

holds for λ ∈ C, t > a, a ∈ R, and α > 0.
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Quantum dynamical groupoid

The superoperators Φt(α), t > 0, describe dynamics of open quantum systems
with power-law memory. The superoperator LV can be considered as a generator
of the quantum dynamical groupoid Φt(α):

C
0D

α
t Φt(α) = −LV Φt(α).

For α = 1, we have Φt(1) = E1[−tLV ] = exp{−tLV }. The superoperators Φt =

Φt(1) form a semigroup such that ΦtΦs = Φt+s, (t, s > 0), Φ0 = LI . This
property holds since exp{−tLV } exp{−sLV } = exp{−(t + s)LV }.
For α 6∈ N we have

Eα[−tαLV ] Eα[−sαLV ] 6= Eα[−(t + s)αLV ].

Therefore the semigroup property is not satisfied for non-integer values of α:

Φt(α)Φs(α) 6= Φt+s(α), (t, s > 0).

As a result, the superoperators Φt(α) with α 6∈ N cannot form a semigroup.
This property means that we have a quantum processes with memory. The
superoperators Φt(α) describe quantum dynamics of open systems with memory.
The memory effects to dynamical maps mean that their present evolution of
A(t) depends on all past values of A(τ ) for τ < t.
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4 LINEAR OSCILLATOR WITH FRICTION AND MEMORY

Let us consider an oscillator with linear friction and power-like memory. In
this example the basic assumption is that the general form of a bounded
completely dissipative superoperator holds for an unbounded superoperator
LV . We assume that the operators H, and Vk are functions of the operators Q
and P such that the obtained model is exactly solvable. Therefore we consider
Vk = Vk(Q,P ) as the first-degree polynomials in Q and P , and the Hamiltonian
H = H(Q,P ) as a second degree polynomial in Q and P :

H =
1

2m
P 2 +

mω2

2
Q2 +

µ

2
(PQ + QP ), (23)

Vk = akP + bkQ,

where ak, and bk, k = 1, 2, are complex numbers. These assumptions mean that
the friction force is proportional to the velocity.
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Using the definition of LV and the canonical commutation relations for
operators Q and P , we obtain

−LVQ =
1

m
P + µQ− λQ,

−LVP = −mω2Q− µP − λP,

where λ = Im
(
a1b
∗
1 + a1b

∗
1

)
. Let us consider generalized Lindblad equation (19)

for Qt and Pt in the form

C
0D

α
t Qt = −LVQt,

C
0D

α
t Pt = −LVPt, (24)

where C
0D

α
t is the Caputo fractional derivative with respect to time t, which is

dimensionless variable.
We define the matrices

A =

(
Q

P

)
, M =

(
µ− λ m−1

−mω2 −µ− λ

)
. (25)

Then equations (24) for quantum observables have the matrix representation

C
0D

α
t At = MAt, (26)

where −LVAt = MAt.
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If we consider the Cauchy problem for equation (26) in which the initial
condition is given at the time t = 0 by A0, then its solution can be represented
in the form

At = Φt(α)A0,

where
Φt(α) = Eα[tαM ].

The Mittag-Leffler function with the matrix argument is defined by

Eα[tαM ] =

∞∑
n=0

tnα

Γ(αn + 1)
Mn.

For α = 1, we obtain

Φt(1) = Φt =

∞∑
n=0

tn

n!
Mn = etM . (27)
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The matrix M can be represented in the form

M = N−1FN, (28)

where F is a diagonal matrix, and

N =

(
mω2 µ + ν

mω2 µ− ν

)
, (29)

F =

(
−(λ + ν) 0

0 −(λ− ν)

)
. (30)

Here we use the complex parameter ν, such that ν2 = µ2 − ω2.
Using (28), the one-parameter superoperators Φt(α) are represented by

Φt(α) =

∞∑
n=0

tnα

Γ(αn + 1)
Mn = N−1

( ∞∑
n=0

tnα

Γ(αn + 1)
F n

)
N.

As a result, we have
Φt(α) = N−1Eα[tαF ] N. (31)

For α = 1, we have
Φt(1) = N−1etFN.
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Substitution of (29) and (30) into (31) gives

Φt(α) =

(
Cα[λ, ν, t] + (µ/ν)Sα[λ, ν, t] (1/mν)Sα[λ, ν, t]

−(mω2/ν)Sα[λ, ν, t] Cα[λ, ν, t]− (µ/ν)Sα[λ, ν, t]

)
,

where we use the notations

Sα[λ, ν, t] =
1

2

(
Eα[(−λ + ν)tα]− Eα[(−λ− ν)tα]

)
,

Cα[λ, ν, t] =
1

2

(
Eα[(−λ + ν)tα] + Eα[(−λ− ν)tα]

)
.

As a result, we obtain At(α) = Φt(α)A0 in the form

Qt =
(
Cα[λ, ν, t] +

µ

ν
Sα[λ, ν, t]

)
Q0 +

1

mν
Sα[λ, ν, t]P0, (32)

Pt = −mω
2

ν
Sα[λ, ν, t]Q0 +

(
Cα[λ, ν, t]− µ

ν
Sα[λ, ν, t]

)
P0. (33)

For α = 1, we get

Sα[λ, ν, t] = e−λt sinh(νt), Cα[λ, ν, t] = e−λt cosh(νt),

and equations (32) and (33) give the well-known solutions.
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Note that for Vk = 0 (k = 1, 2), we have closed Hamiltonian system with
memory, that is described by Heisenberg equation (21). The solution of the
equation for linear oscillator with power-law memory is given by (32) and (33),
where λ = 0.

For non-integer α, the Mittag-Leffler function in equations (32) and (33) can
be represented in the form

Eα,1(−ztα) = fα(z1/αt) + gα(z1/αt), (34)

where

fα(t) =
1

π

∫ ∞
0

e−rt
rα−1 sin(πα)

r2α + 2rα cos(πα) + 1
dr,

gα(t) =
2

α
et cos(π/α) cos [t sin(π/α)] . (35)

The function gα(t) exhibits oscillations with circular frequency Ω(α) = sin(π/α),
and exponentially decaying amplitude with rate λ(α) = | cos(π/α)|. The functions
fα(t) exhibit an algebraic decay as t→∞. Therefore the linear oscillator with
memory demonstrates power-law decay. Note that we have power-law decay
for open and closed Hamiltonian quantum systems with memory. As a result,
the power-law memory leads to dissipation.
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As a result, generalized Lindblad equation with time fractional derivative
describes evolution of quantum observables of open quantum systems with
memory. The quantum processes with power-law memory (α 6∈ N) cannot be
described by a semigroup. It can be described only as a quantum dynamical
groupoid. As a result, the long-term memory for open and closed quantum
systems can lead to dissipation with power-law decay.
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